Minimal quasi-stationary distribution approximation for a birth and death process

نویسنده

  • Denis Villemonais
چکیده

In a first part, we prove a Lyapunov-type criterion for the ξ1-positive recurrence of absorbed birth and death processes and provide new results on the domain of attraction of the minimal quasi-stationary distribution. In a second part, we study the ergodicity and the convergence of a Fleming-Viot type particle system whose particles evolve independently as a birth and death process and jump on each others when they hit 0. Our main result is that the sequence of empirical stationary distributions of the particle system converges to the minimal quasi-stationary distribution of the birth and death process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Deviations and Quasi-stationarity for Density-dependent Birth-death Processes

Consider a density-dependent birth-death process X N on a finite state space of size N . Let PN be the law (on D.[0; T ]/ where T > 0 is arbitrary) of the density process XN =N and let 5N be the unique stationary distribution (on [0,1]) of X N =N , if it exists. Typically, these distributions converge weakly to a degenerate distribution as N ! 1, so the probability of sets not containing the de...

متن کامل

A Note on Quasi-stationary Distributions of Birth-death Processes and the Sis Logistic Epidemic

For Markov processes on the positive integers with the origin as an absorbing state, Ferrari, Kesten, Martinez and Picco [4] studied the existence of quasi-stationary and limiting conditional distributions by characterizing quasi-stationary distributions as fixed points of a transformation Φ on the space of probability distributions on {1, 2, . . .}. In the case of a birth-death process, one ca...

متن کامل

Limiting Conditional Distributions for Birth-death Processes

In a recent paper [16], one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these results in a number of directions. We shall consider separately two cases depending on wheth...

متن کامل

Quasi-Stationary Distributions For A Class Of Discrete-Time Markov Chains

This paper is concerned with the circumstances under which a discrete-time absorbing Markov chain has a quasi-stationary distribution. We showed in a previous paper that a pure birth-death process with an absorbing bottom state has a quasi-stationary distribution – actually an infinite family of quasi-stationary distributions – if and only if absorption is certain and the chain is geometrically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015